第404章 最贪的选择(1 / 4)
好书推荐:
女配的修仙路漫漫
修道长生:我有功法面板
称霸篮坛,从抽中天勾技能开始
希亚新纪元
狼人杀:请开始你的表演
从纯阳功开始加点
开局掌握圣道之力
大唐:开局抓了李二大公主当丫鬟
大世界!
太子爷纨绔记
陈舟明显愣了一下。
这是一上来,就考自己吗?
从几何角度研究非交换环?
真要说起来,对于非交换环,陈舟还是有些看法的。
非交换环的一个最常见的例子,或许就是矩阵了。
利用矩阵可以得到一批非交换环的反例。
就好像,若s是包含在环r内的相应维数为无穷的域。
那么a=re_11+re_12+se_22,是左noether与左artin的。
但不是右noerther与右artin,这说明了链条件在非交换环中有左与右的差别。
在除环上的所有矩阵的有限直积,构成了所谓的半单环类。
这就是通常所说的edderburn-artin定理。
这也是非交换环中第一个精彩的结构定理。
更加有趣的是,它通过矩阵的对称结构,自然说明了左半单环等价于右半单环。
在交换环中,最常见的两个根分别是jacobson根与幂零根。
前者简称为大根,它是所有极大理想的交。
后者简称为素根或小根,它是所有素理想的交。
而在非交换的情形中,一个根就可能分化为三个根,满足某类条件左、右理想以及理想的交。
事实上,非交换环r,所有极大左理想的交,恰恰就是所有极大右理想的交。
并且它们良好的继承了相应的可逆性质。
因此就称其为非交换环的jacobson根,也记作rad(r)。
尽管非交换环中有左与右的区别,但也不乏此类殊途同归的有趣现象。